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1 Overview

This book is ambitious.1 It tries to bring together insights 1 To keep things snappy: MoI = The
meaning of ‘if’ .from philosophy, linguistics, and logic to shed light on the

many persistent and stubborn mysteries about condition-
als — what they mean, how they express those meanings, and
how they fit in to how we exchange information about the
world and its happenings even while we remain ignorant about
a great many things.

There are a lot of books published in philosophy these days.
If I’m honest, too many. But few are as ambitious in scope,
method, and target as is this one and for that it deserves high
praise. I want to be clear about that because what follows might
not seem to be dripping with praise. To be fair though, that
wouldn’t make for a very useful or entertaining session.

I like to think of doing philosophy as not unlike being a lawyer.2 2 Likely more accurately: a TV
lawyer.So Justin’s job in writing this (quite long!) book is to advocate

for a (quite large!) bundle of ideas about how we think about
and express iffy things. My job as critic is to act as opposing
counsel: see whether some of those ideas will break under
cross-examination and, when they do, to see what crimes I can
get them to confess to.

Having said that, I don’t know that anything I have to say is an
objection as such. This is just me working through some things
and seeing where they go.

Time, not to mention your attention, is a scarce resource and
so I will focus on just a few key cogs in the various analyses in
MoI . That’s the good news. The bad news is that what I have to
say will be about some nitty-gritty details in how those cogs can
and can’t turn. In my defense, that is as it should be for a book
about the meaning of if : the details are where the dragons live.3 3 Phrase shamelessly stolen from Kai

von Fintel.

2 Core semantics

The core analysis is this:
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Definition 1. A conditional A→ C is true relative to:

1. context c;

2. sequence σ (equivalently: a linear order over the set of
worlds);

3. modal base m (eventually decomposed, in effect, into modal
base h and ordering source g relative to time t and world w);
and

4. admissible partition Z

iff (roughly) the nearest A-world is a C-world, nearness being a
function of the sequence, modal base, and partition.

Comment 1. The meaning of if , in other words, is relative to
no less than seven (7!) parameters, which must be some sort
of record. To be fair, and mercifully, not all parts of the book
invoke all of the parameters all of the time. Though that kind
of makes the point that the various incarnations of the analysis
are not as unified as you would like.

My plan is to raise some issues about how these parameters fit
together according to the theory in MoI .4 4 Notation: A,B, . . . for sentences,

A,B, . . . for corresponding sets
of worlds, A,B, . . . for sets of se-
quences.3 Partition dependence

In one segment of MoI the truth of a conditional A → C de-
pends on a contextually relevant partition.5 Different partition, 5 Of logical space? Of the modal

base? Of the common ground? I’m
not entirely sure: the theory says the
first, but some of the examples in
MoI treat it as one of the latter two.

possibly different truth values, and possibly different prob-
abilities. Partitions are determined by the Question Under
Discussion (QUD) in the context.

There’s nothing objectionable in any of this. Partitions, partition-
dependence, and QUDs are very trendy.6 6 I mean, look at this rogues’ gallery

that all employ this gambit: Egan
2016; von Fintel & Gillies 2010; Moss
2015; Roberts 2020; Yalcin 2007.

But what might be objectionable are the constraints MoI places
on admissible partitions. Context/QUD fixes a partition, subject
to the partition meeting two side conditions.

Definition 2. A partition Z is admissible for a conditional A→ C
at σ only if:

1. for every Z ∈ Z: Z ∩mA
σ 6= �; and

2. for some Z ∈ Z: Z 6⊆ C and Z 6⊆ C̄.
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Admissibility is curated to rule out certain partitions in some
exotic examples. However perfectly ordinary contexts, with
perfectly ordinary QUDs, give rise to inadmissible partitions.

Example. There has been a murder. The murderer acted alone,
and there are only two suspects (the butler, the gardener). We
are trying to solve the case and so the QUD is: Who did it?

Consider:

(1) If the butler didn’t do it, the gardener did. ¬B → G

Observation 1. The QUD-induced partition {B,G} =
{
B, B̄

}
is

ruled out as inadmissible for the conditional (1).7 7 Note also that {B,G} =
{
Ḡ,G

}
.

Proof. This partition flouts both constraints: (i) not every cell
overlaps with mB̄

σ ; and (ii) there is no cell that entails neither G
nor Ḡ (because B = Ḡ).

Comment 2. If this counts as an inadmissible partition for
(1) then I fear that the definition is not latching onto a natural
target, or the connection between QUD and partition is not
what we thought.

In what follows I will set partition-dependence aside.

4 Is this really a nearness analysis?

On the one hand, in MoI there is a lot emphasis on the idea that
A → C is, fundamentally, a Stalnaker & Thomason 1970 type
conditional: it gets a truth value at a sequence8 and the core 8 A.k.a. a (family of) well-founded

ordering �w that is reflexive, anti-
symmetric, and connected.

semantics validates the characteristic entailment patterns of
conditional excluded middle and strong centering.9

9 For the record: I am not a fan of
either.But, on the other hand, when it comes to a state supporting a

conditional, the ordering information is washed away and what
is important is that the state supports some strict conditional
content.

Definition 3. The refined content ⇑S determined by a state S is
defined as:

⇑S = {σ : ∀w ∈ S & ∀v 6∈ S| w >σ v}

Definition 4. A state (set of worlds) S supports A → C iff
⇑S ⊆ A→ C.
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Observation 2. If mw = S for each w ∈ S then S supports A→ C
iff (S∩A) ⊆ C.

Proof. Suppose S supports A → C and consider any v ∈ S ∩A.
Since v ∈ S there is some σ such that σw = v . Since S supports
A → B, it follows that σ(A) ∈ B and so v ∈ B. Now suppose
(S∩A) ⊆ B and let σ be any sequence in ⇑S. Since mw = S for
every w ∈ S, it follows that σ(A) ∈ S. Since σ(A) ∈ S∩A it then
follows that σ(A) ∈ B and thus that S supports A→ C .

Of course maybe this is exactly what is intended. Part of me
is sympathetic to that: I have defended various versions of
broadly state-based semantics that treat if as a (dynamic) strict
conditional.10

10 Gillies 2004, 2020

But what MoI presents is not exactly a strict conditional story,
even at the level of support-at-a-state. That is because the pro-
cess of going from a state (set of worlds) to a refined state (set
of sequences of worlds) introduces some unexpected results.

Definition 5. A formula A is persistent iff for any S,S′: if S
supports A then S′ supports A whenever S′ ⊆ S.

More generally: persistence is preservation of support as igno-
rance shrinks.

Observation 3. Conditionals are not persistent given the core
semantics in MoI .

Counterexample. Let mwi = S for 1 ≤ i ≤ 4 where:

• S =
{
w1,w3,w4

}
;

• A = {w1,w2}; and

• C =
{
w1,w3

}
.

Note that A → C is supported by S: the only AC̄-world is w2

and it is ranked last by every sequence in ⇑S since it is the only
world not in S. But — and this is the key thing — taking refined
contents is not monotonic: ⇑ S′ 6⊆⇑ S even though S′ ⊆ S. As a
result there are two sequences in ⇑S′ in which w2 > w1 and two
sequences in which w1 > w2. See Figure 1. w2

w1

w4

w3

C

C̄
A

Ā

S

S′

Figure 1: Non-persistence

Comment 3. This is surprising since from a state-based seman-
tics point of view, you expect broadly 2/∀-like environments
like conditionals to be persistent and their negations to be
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broadly 3/∃-like and therefore not-persistent. Here it is the
opposite.

At this point I am not quite sure I fully get why MoI takes the
detour through the Stalnaker & Thomason conditional only to
wash out its main effects, especially when it appears that that
detour introduces unexpected artifacts?

5 A type mismatch?

OK, confession time: who gets what it means for a conditional’s
truth value to be evaluated at a sequence and for its content to
be a set of sequences (rather than, say, a set of worlds)? I want
to put stress on this.

High altitude version of the worry: in general, for a happy com-
positional treatment of an index shifting operator capable of
being embedded and embedding other things, you want the
truth conditions to fundamentally be about goings on at in-
dices. The core semantics in MoI does not do this: conditionals
get truth values at sequences according to whether or not var-
ious worlds meet certain conditions. This is a red flag since
worlds and sequences are different types of objects.

So, let’s say we want to add an existential modal like maybe to
mix with our if s.

(2) a. Maybe if he didn’t tell Tom he told Harry.
3(¬T → H)

b. If he didn’t tell Tom, maybe he told Harry.
¬T → 3H

Note that maybe can occur either above or below if .

We might try, as a first pass, the gestured-at way of incorporat-
ing an existential modal into the core semantics from MoI :

Definition 6 (First try). For any A, w, and m:

J3AKw,m = 1 iff ∃v ∈mw : JAKv,m = 1

This is exactly what you’d expect: maybe shifts the point of
evaluation, looking for a world in the modal base where its
prejacent is true.11 Terrific! Except, of course, if its prejacent is 11 Mostly. I don’t really know how the

world parameter gets determined
here. Maybe it is the first world in
the sequence that is the index for
any upstairs conditional?

a conditional since those only get truth values at sequences.
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Obvious solution: give a recursive definition of truth-at-a-
sequence.

Definition 7 (Second try). For any atom p, and any A, σ , and
m:12

12 Treat worlds as valuations; as in
MoI , σw is the first world in σ .

1. JpKσ,m = 1 iff σw(p) = 1

2. (boolean clauses you’d expect)

3. J3AKσ,m = 1 iff ∃σ ′ : σ ′w ∈mσ & JAKσ
′,m = 1

In other words: maybe looks for a sequence whose first mem-
ber is in the modal base and checks to see if its prejacent is
true at the shifted sequence.13 Terrific! 13 Note that for descriptive A, there

is a derivative sense of truth-at-w:
being true at a sequence whose first
member is w. This doesn’t make
sense for modals.

However. The core semantics in MoI assigns truth values at
sequences but based on properties of worlds: A → C is true
at σ iff its first world where A is true that is in mσ is a world
where C is true. But if C = 3B, then we are again stuck because
3B is assigned truth values at sequences, not worlds.

Or take, for instance, hedged conditionals and conditional
hedges:

(3) a. Probably if he didn’t tell Tom he told Harry.
Q (¬T → H)

b. If he didn’t tell Tom, he probably told Harry.
¬T →Q H

In (3a) probably takes wide scope over a conditional and so
needs to latch onto the kind of probability in Chapter 5 of MoI
suitable for sets of sequences. But in (3b) it takes narrow scope
and so would seem to need to latch onto the more mundane
probabilities of sets of worlds.

Comment 4. The suspicion is that this pattern repeats. (And
is why the treatment of, say, embedded conditionals and im-
port/export has a whiff of non-compositionality.)

6 King of Bavaria and Veltman’s sisters

The approach to counterfactuals in MoI in MoI is an intriguing
mix of a broadly interventionist approach (Pearl, 2009; Halpern,
2016) and a broadly restricted-modality approach (Kratzer,
1979, 2012).14

14 This is meant to be continuous
with the sequence semantics stuff
that precedes it. I admit to not being
completely sure about that and so
will just begin with a clean slate
here.
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Start with a sufficiency network that models the dependencies
(deterministic and otherwise) or “laws”, and records which
atomic facts are true and which are false. A counterfactual is,
roughly, a restricted necessity operator over a domain. But the
domain is built up from two distinct sets of premises.

Definition 8. For a counterfactual A� C at w (and time t):

1. Historical modal base:

hA
w,t =


P = A or

P : P is a pre-t truth or

P is a post-t sufficiency


2. Ordering:

gA
w,t =

{
P : P is a post-t truth independent of A

}
Clearly, the notion of independence is key.

To see this in action, consider an example.15
15 The example is from Veltman 2005
but has the shape as the “King of
Bavaria” example in Kratzer 1989.Example. Three sisters — Ann, Billie, Carol — own just one bed,

large enough for two of them but too small for all three. Every
night at least one of them sleeps on the floor. Whenever Ann
sleeps in the bed and Billie sleeps in the bed, Carol sleeps on
the floor. Tonight, Billie is sleeping in the bed, Ann is on the
floor, and Carol is in bed. (See Figure 2.)

(4) If Ann were sleeping in bed, then Carol would be on the
floor.

This counterfactual does not seem true. Why couldn’t Billie be
on the floor if Ann had been in bed?

Observation 4. The analysis in MoI predicts this.16
16 Officially (4) is “non-factual”. It
just seems false to me but YMMV.

The reason is simple: neither A nor B are independent of C̄.
So some worlds quantified over are B-worlds and some are B̄
worlds.

A

F

B

T

C̄

F

t

Figure 2: Veltman’s sisters

Comment 5. Here the semantics in MoI disagrees with Kratzer
1989 and agrees with Veltman 2005.
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7 Cautious monotonicity

Famously, interventionist approaches are somewhat limited
in scope: they are most at home for flat, unembedded con-
ditional fragments. But where they overlap in coverage with
full-throated logics of conditionals, there are interesting ques-
tions about exactly where they are located in logical space. The
same question arises here for the analysis in MoI . I do not have
a full answer, but have a somewhat surprising partial answer.

Example. Two switches, A and B, are connected to a light. If
both switches are up, the light is on. How are the positions of A
and B set? I’m glad you asked. By a combination of a coin toss,
a die roll, and a random drawing of a card from a standard
deck.

1. Switch B is up if the coin comes up heads and the roll is
even.

2. For switch A, if the coin comes up heads then there is a
subsequent card draw. If the card is red then A is up.

As it happens, the coin came up heads, the roll was odd, the
card came up red, and so the light is off. (See Figure 3.) HT

E
F

B

F

L
F

R̄
R

T

F

AT

t

Figure 3: A dumb way to turn on a
light

Now consider:

(5) a. If the roll had been even, switch B would have been up.
E� B

b. If switch B had been up, the roll would have been even.
B� E

These are both predicted to be true.

Observation 5. E� B and B� E.

Proof.
E� B: hE

w = {E, (E∧H) ≡ B, . . .} and gE
w = {H, . . .}. These two

premise sets entail B.

B � E: hB
w = {B, (E∧H) ≡ B, . . .} and this on its own entails

E.

However, consider these counterfactuals:
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(6) a. If the roll had been even, the light would have been on.
E� L

b. If switch B had been up, the light would have been on.
B� L

The key is that these differ only in their conditionally equiva-
lent antecedents. But they are not predicted to have the same
truth values.

Observation 6. E� L but not B� L.

Proof.
E� L: hE

w = {E, (E∧H) ≡ B,R ⊃ A, (A∧ B) ≡ L}. H is indepen-
dent of E and R is independent of E. Thus hE

w and gE
w entail B

and entail A, and so entail L.

B� L: the crucial fact is that H is not independent of B and so
R is not independent of B and A is not independent of B.

More carefully: (i) H governs B; (ii) H governs R∨ R̄ and so
governs R; and R governs A. Therefore B and R share a root
and B and A share a root. Thus B and R are connected and B
and A are connected. Hence B and R are not independent and B
and A are not independent. Therefore R 6∈ gB

w and A 6∈ gB
w .

Comment 6. This doesn’t seem right empirically. Both (6a) and
(6b) seem true.

Comment 7. Interesting!

Definition 9. A conditional ⇒ satisfies (LCE) iff it satisfies

(A⇒ C) ⊃ (B ⇒ C)

whenever A⇒ B and B ⇒ A.

Observation 7. The example above is a countermodel for (LCE)
for the counterfactual in MoI .

Definition 10. The (flat) conditional logic P is the smallest logic
containing all propositional tautologies plus:17

17 This axiomatization first appears (I
think) in Burgess 1981.

1. A⇒ A (Refl)

2. (A⇒ B ∧A⇒ C) ⊃ (A⇒ (B ∧ C)) (RDM)

3. (A⇒ B ∧ C) ⊃ (A⇒ B) (RUM)

4. ((A⇒ B)∧ (A⇒ C)) ⊃ ((A∧ B)⇒ C) (CM)

5. ((A⇒ C)∧ (B ⇒ C)) ⊃ ((A∨ B)⇒ C) (Disj)
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Observation 8. Any logic at least as strong as P satisfies (LCE).

Proof. The proof invokes each of (Refl), (RDM), (RUM), (Disj),
and — tellingly — (CM).

Corollary 1. The counterfactual in MoI is not at least as strong
as the conditional of P.

Comment 8. Since each characterizing validity of P is involved
in deriving (LCE), and we have a counterexample to (LCE) for
the MoI counterfactual, at least one of those validities must
fail for the counterfactual in MoI . However, it is difficult to see
just which ones because the interventions are not defined for
logically complex antecedents. So in particular it is hard to see
whether the counterfactual in MoI validates (CM) and (Disj).

It is highly unobvious how to fix this for (Disj), but it is (more
or less) straightforward how to patch things for (CM).18

18 Forgive the abuse of notation here:
since A and B are propositions, ∧
doesn’t belong between them.Definition 11 (Ordering∗). For any A and B:

gA∧B
w,t =

{
P : P is a post-t truth independent of both A and B

}

Observation 9. Assuming Ordering∗, the same example above is
a countermodel to (CM).

Proof. E � B and E � L are both true but (E ∧ B) � L is
not true. The reason is the same as before: R and A are not
independent of B and so not independent of both E and B.

Comment 9. You might be tempted to revise Ordering∗ so that
gA∧B
w,t includes P only if P is independent of either A or B. Don’t

give in to temptation.

8 Closing arguments

I guess if I’m going to press the courtroom model, here is where
I would sum up. I’m not going to do that, though. There is more
stuff in the book and more things to say about that stuff but by
now I think you can see the sorts of things I’d want to say.



11

References

Burgess, John P. 1981. Quick completeness proofs for some
logics of conditionals. Notre Dame Journal of Formal Logic
22(1). 76–84.

Egan, Andy. 2016. What i probably should have said about epis-
temic modals. Ohio State University Linguistics & Phiosophy
Workshop.

von Fintel, Kai & Anthony S. Gillies. 2010. Must...stay...strong!
Natural Language Semantics 1–33. doi: 10.1007/s11050-010-
9058-2.

Gillies, Anthony S. 2004. Epistemic conditionals and condi-
tional epistemics. Noûs 38. 585–616. doi: 10.1111/j.0029-
4624.2004.00485.x.

Gillies, Anthony S. 2020. Updating data semantics. Mind 129.
1–41. doi: 10.1093/mind/fzy008.

Halpern, Joseph Y. 2016. Actual causality. MIT Press.

Khoo, Justin. 2022. The meaning of ‘if’. Oxford University Press.

Kratzer, Angelika. 1979. Conditional necessity and possibility.
In Arnim von Stechow Rainer Bäuerle, Urs Egli (ed.), Semantics
from different points of view, 117—147. Springer.

Kratzer, Angelika. 1989. An investigation of the lumps of
thought. Linguistics and Philosophy 12. 607–53.

Kratzer, Angelika. 2012. Modals and conditionals. Oxford
University Press.

Moss, Sarah. 2015. On the semantics and pragmatics of epis-
temic vocabulary. Semantics and Pragmatics 8(5). 1–81. doi:
10.3765/sp.

Pearl, Judea. 2009. Causality: Models, reasoning, and inference.
Cambridge University Press, 2nd edn.

Roberts, Craige. 2020. The character of epistemic modality:
Evidentiality indexicals. The Ohio State University.

Stalnaker, Robert & Richmond Thomason. 1970. A semantic
analysis of conditional logic. Theoria 36. 23–42.

Veltman, Frank. 2005. Making counterfactual assumptions.
Journal of Semantics 22. 159–180.



12

Yablo, Stephen. 2014. Aboutness. Princeton University Press.

Yalcin, Seth. 2007. Epistemic modals. Mind 116(464). 983–1026.
doi: 10.1093/mind/fzm983.


	Overview
	Core semantics
	Partition dependence
	Is this really a nearness analysis?
	A type mismatch?
	King of Bavaria and Veltman's sisters
	Cautious monotonicity
	Closing arguments

